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Abstract. An objective, local, hidden-variables theory of the Clauser-Horne photon 
correlation experiment is derived using the method previously used to describe the Bohm- 
EPR thought experiment. 

We have shown elsewhere (Liddy 1983) that it is possible to construct an objective, 
local, hidden-variables theory (OLHV, see Clauser and Horne (1975) for a definition 
of these terms) that reproduces the quantum mechanical predictions for the Bohm-Em 
thought experiment (Bohm 1951). However, almost all the experiments that have 
been performed to test these predictions have employed a variant of the thought 
experiment, produced by Clauser and Horne (1975), which uses photons instead of 
spin-$ particles. (For a review see Clauser and Shimony 1978.) It therefore seems 
appropriate to look for an OLHV which describes this modified experiment. 

The experiment essentially entails the production of two photons which travel in 
opposite directions and whose polarisations are strictly correlated. That is, if one of 
the photons were to pass through a polariser aligned in a particular direction then the 
second photon would pass through a similarly aligned polariser without fail. The 
photons then enter polarisers, whose settings are known, and we record whether or 
not the photons pass through the polarisers. We will use an idealised version of the 
experiment in which it is known that the photons have entered the polarisers and 
further that the polarisers are 100% efficient. 

We will use the same method for constructing the OLHV as was used in Liddy 
(1983). To be able to do this, we will denote the two possible outcomes of any 
measurement by numbers which have the same absolute value. Thus we will say that 
the outcome of the event ‘the photon passes the polariser’ is 1 and that the outcome 
is -1 otherwise. The quantum mechanical expectation for the outcome of a measure- 
ment on photon A, by a polariser aligned in direction a (all vectors used will be of 
unit length), is thus (see Clauser and Shimony 1978, pp 1906-7) 

E[A,I = 0 ,  (1) 
while the conditional expectation for a second measurement in direction b, given that 
the photon passed the first polariser, is 

(2) E [ A , ~ A ,  = 11 = 2(a -  b)2  - 1. 

The expectation given by quantum mechanics for the product of the outcomes of 
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measurements on each of the correlated particles is 

E[AaBb]=2(a-b)’-1. (3) 

These three results must be reproduced by any OLHV of the experiment under 
consideration. Before constructing our OLHV it must be stated that no attempt will 
be made at explaining or searching for the mechanisms involved. The sole aim of this 
exercise is to show that the predictions of quantum mechanics can be reproduced by 

Let us now suppose that all photons have a definite polarisation, denoted by the 
unit vector P. As light is a transverse wave this vector must always be perpendicular 
to the direction of motion. Further suppose that a photon passing through a polariser 
will have its polarisation changed so that 

OLHVS. 

P-, a,  (4) 
where a is the orientation of the polariser. Using this and (2) we can immediately 
identify the expectation of a measurement on a single photon as 

E [ A, 1 PI = 2( U * P) ’ - 1. 

V[A, (PI = E[AZ, IP] - (E[A, JP])’ = 4( U * P)’~u x PI’. 

( 5 )  

(6) 

The conditional variance is then given by 

Also if the photons take all values of P with equal probability (i.e. the light source is 
unpolarised) we find that 

where the coordinates have been chosen so that the photon moves in the y direction, 
that a = k, and that P= sin @+cos 4 k  (i, j ,  k are the usual Cartesian unit vectors). 
Thus our choice of conditional expectation, in the case of a single photon, satisfies 
both (1) and (2). 

Now consider the Clauser-Horne experiment. We have two photons, A and B, 
which are strictly correlated. That is, the outcomes of measurements by parallel or 
perpendicularly oriented polarisers are related by 

LQ> (8) B = A  =-A a a  

where l a  denotes those two vectors which are perpendicular to a and normal to the 
direction of motion. Thus we have 

E [ B, 1 PI = E [ A, IP] = -E [ A , JP]. (9) 
By requiring that the polarisation vector for photon B be the same as that for photon 
A we can ensure that equations (9) are satisfied. 

We may now write the conditional joint expectation as 

E[AaBb IPl = ELA, lP1E[Bb /PI + Cov[A,, B b  IP], 

Cov[A,, B,IP] = V[A,IP]. (11) 

(10) 
where Cov[A,, BbIP] is, by definition, the conditional covariance. Note that 

The conditional covariance is constrained by the inequality (see e.g. Rao 1965) 



An objective, local, hidden-variables theory 849 

and must be such as to enable the averaged conditional joint expectation to satisfy 
( 3 ) .  In order to show that there exists a conditional covariance which satisfies these 
conditions we will write it as 

where 6 is the small angle between a and b and p ( 6 )  is, by definition, the correlation 
coefficient. Our choice of the dependence of p on 8 alone enables us to determine it 
uniquely, as well as to satisfy ( 3 )  and (12). Since our aim is to show the possibility of 
an OLHV, this restriction does not weaken the argument and is justified. 

p ( 6 )  = ( T C O S  26)/[2 sin 2 8 + ( ~ - 4 8 )  ~ 0 ~ 2 8 1 ,  

Using (10)  and ( 1 3 ) ,  and assuming (3) ,  we find that 

0 s  6 s  7r/2, (14)  

where we have again assumed that the light source is unpolarised. As I p ( 6 ) l s  1 ,  ( 1 2 )  
is satisfied, thus showing that our OLHV is viable. The conditional joint expectation 
is then 

E [  A,Bb I P] = [ 2( a * P) ’ - 1 ] [  2( b * P)’ - 1 ] + T I  U 41a X b .  41 b X PI[ 2 ( U * b )  ’ - 1 ] 

x{~u .  blla x ~ \ + [ T / ~ - C O S - ’ ( U *  b ) ] [ 2 ( a *  b)’-  l ] } - ’ .  ( 1 5 )  
We may now calculate the joint probabilities. Firstly the quantum mechanical 

prediction for the probability of a photon passing a polariser aligned in direction b 
given that it has passed a polariser aligned in direction a is 

p [ A b =  lIA, = I ] = ( u -  b)’. ( 1 6 )  

As in ( 5 ) ,  we can therefore identify the probability that a photon polarised in direction 
P passes an analyser set for direction a is 

p[A,  = lIP] = ( a -  P)’. ( 1 7 )  
When averaged over all values of P this gives 

again giving agreement with quantum mechanics. 

follows from ( 5 ) ,  ( 1 0 )  and ( 1 7 )  that 
The joint probabilities for the Clauser-Horne experiment can now be obtained. It 

p [  A, = CY n Bb = p IP] = p[A,  = IP]p[ Bb = p JP] + $CYp COV[ A,, Bbl PI, ( 1 9 )  

where a, p E { - 1 , 1 } .  Averaging over P again returns the quantum mechanical result. 
The joint probabilities also satisfy the inequalities 

0 Sp[A,  = CY n Bb = p I P ] s  p[A,  = a l p ] ,  p[Bb =PIP] .  (20) 

Formally, we can say that we have determined a measure space M = ( X ,  SB, m )  for 
our hidden-variables system where X is the product space of the event spaces A,, Bb 
and SI (i.e. the vectors P are represented as points on the surface of a unit circle), 
d is the product of the power set of A,  X Bb with the Bore1 U-field of Si, and the 
measure m is defined by 

m ( X , )  = m ( A , ,  X Bbl XdR,) = p [ &  = a ,  n Bb = PiIPz](d8,)/27r, ( 2 1 )  
where d a ,  is the infinitesimal solid angle within which P, lies. This satisfies all the 
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requirements of a probability space and returns the quantum mechanical probabilities 
as marginals. 

This probability space is not unique, nor do we have a physical justification for it. 
We have merely tried to show that the Clauser-Horne experiment may be described 
by an OLHV and that these experiments cannot differentiate quantum mechanics from 
OLHV. 
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